Some Non-split Extensions of the Orthogonal Group Ω(7,3)
نویسندگان
چکیده
منابع مشابه
extensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOn the degrees of non-split extensions by an alternating group
Let G ≤ Sn be a permutation group of degree n with a quotient isomorphic to Ak. We show that if n < (1/2 − o(1))k then the extension splits. Motivated by this result, Guralnick and Liebeck have shown that the conclusion fails to hold if we allow n to be n = 2k(k − 1), establishing a tight quadratic growth rate for the smallest degree of a faithful permutation representation of a non-split exten...
متن کاملCohomology of Split Group Extensions and Characteristic Classes
There are characteristic classes that are the obstructions to the vanishing of the differentials in the Lyndon-Hochischild-Serre spectral sequence of an extension of an integral lattice L by a group G. These characteristic classes exist in the r-th page of the spectral sequence provided differentials di = 0 for all i < r. If L further decomposes into a sum of G-sublattice L = L ⊕ L, we show tha...
متن کاملSplit Extensions of Group with Infinite Conjugacy Classes
We give a characterization of the group property of being with infinite conjugacy classes (or icc, i.e. 6= 1 and of which all conjugacy classes beside 1 are infinite) for split extensions of group.
متن کاملOn the non-split extension group $2^{6}{^{cdot}}Sp(6,2)$
In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inerti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2000
ISSN: 0021-8693
DOI: 10.1006/jabr.1999.8084